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Abstract. Quantum field theories based on interactions which contain the Moyal star product suffer, in the
general case when time does not commute with space, from several diseases: quantum equation of motions
contain unusual terms, conserved currents cannot be defined and the residual spacetime symmetry is
not maintained. All these problems have the same origin: time ordering does not commute with taking
the star product. Here we show that these difficulties can be circumvented by a new definition of time
ordering: namely with respect to a light-cone variable. In particular the original spacetime symmetries
SO(1, 1) × SO(2) and translation invariance turn out to be respected. Unitarity is guaranteed as well.

1 Introduction

Space and time will, at extremely short distances, require
new notions in both mathematical description and physi-
cal content. A simple physical argument for this is based
on the uncertainty principle which says that black holes
can be formed, thus leading to a horizon and other con-
sequences when precision in time is high enough [1]. As a
modest step into this direction one may understand the
introduction of Moyal products in otherwise rather con-
ventional flat space-time quantum field theory. They arise
when the coordinates are being considered as Hermitian
operators which satisfy simple commutation relations like

[xµ, xν ] = iθµν . (1)

A typical interaction then reads

Sint = g

∫
d4x φ(x) ∗ φ(x) ∗ φ(x). (2)

The discussion for the case when time/space commuta-
tors vanish is fairly advanced, whereas the case when they
do not vanish is not yet very well understood. Although
Feynman rules have been proposed which lead to unitar-
ity in non-gauge theories [2–5], gauge theories seem to be
inconsistent [6,7]. A somewhat more detailed study also
reveals that quantum equations of motion have a form
which is intractable in practice [8], but worse is the fact
that symmetries which are present on the classical level do
not seem to be maintained after quantization. The main
truly disturbing example is SO(1, 1) × SO(2) invariance
[8]. This is of course not tolerable: we wish to characterise
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theories by their symmetry content, hence every deviation
from a classically realised symmetry must be very well un-
derstood until we accept it as unavoidable.

In the present paper we first recall the symmetry con-
tent on the classical level as being generically SO(1, 1) ×
SO(2). Since the conventional time ordering is not in ac-
cordance with this symmetry and thus the reason for its
breakdown, we define a new notion of time ordering and
explore the consequences of this change. It turns out that
the perturbation theory formulated on this basis has all
desired properties: it is compatible with the symmetry,
leads to simple Feynman rules and closed expressions for
the quantum equations of motion. The LSZ asymptotic
condition can be formulated and unitarity is maintained.
All of this will be derived for scalar field theories as exam-
ple and is still restricted to the tree approximation (apart
from the unitarity relations which involve one-loop con-
tributions). But the generality of the results supports the
hope that proceeding in the direction of renormalisation
and incorporating gauge theories will be possible.

2 Symmetries and standard form

We would like to show first that all non-commutative
field theories defined from an action via the Moyal prod-
uct are either SO(1, 1) × SO(2) invariant, or have the
symmetries of the so-called light-like case (the product
of two null rotations). To see this consider for simplic-
ity a non-commutative scalar field theory (for example
scalar φ3

∗ theory). The action S[φ; θ], is a functional of
the fields φ and a function of the constant θ matrix θµν .
Now given such an action with an arbitrary θ we change
basis so that a point previously specified by coordinates
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xµ is now specified by the coordinates x′µ = Lµ
νxν where

L ∈ SO(1, 3). Then the scalar field φ transforms to φ′ de-
fined as φ′(x) = φ(L−1x) and it follows that derivatives of
the scalar field ∂µφ transform to Lν

µ∂νφ′. One can then
see that for a theory whose Lorentz violation comes only
from the Moyal star we have

S[φ; θ] = S[φ′; LθLT]. (3)

So by a simple change of coordinates (i.e. we make no
physical change) the transformed action has a similar form
to the original action but with θ replaced by LθLT. This
means that starting with any theory defined in terms of
an arbitrary θ we may change coordinate basis in order
that θ has the simplest form possible.

Let us note parenthetically that the situation has a
strong analogy with a broken internal symmetry. The θ
can be thought of as a field taking on a constant ex-
pectation value which then does not propagate. In this
case the fields arrange themselves in representations of
the larger symmetry although in fact only the symmetry
which leaves the expectation value invariant is preserved.
Similarly here we expect to be able to use the field repre-
sentations of the full Lorentz symmetry even though this
has been broken down to a smaller group.

In order to find the simplest form for θ it is easier to
work with the spinorial representation of θ. We have

θµν = τµν
αβθαβ + τµν

α̇β̇
θ

α̇β̇
, (4)

where α, β = (1, 2) are Weyl spinor indices which trans-
form under SL(2; C) ∼ SO(1, 3) and τ are the Pauli
matrices. So θµν is equivalent to a complex symmetric
2 × 2 matrix θαβ transforming as θ′ = MθMT where
M ∈ SL(2; C) is a complex 2 × 2 matrix with unit deter-
minant. It is easy to check that as long as the determinant
of θ is non-zero there exists an M ∈ SL(2; C) such that

θ′ = MθMT =
√

det(θ)I2. (5)

The remaining symmetry which leaves θ′ invariant is
clearly SO(2; C).

If, on the other hand, the determinant of θ vanishes
then either θ = 0 or there is an M such that

θ′ = MθMT =

(
1 0
0 0

)
. (6)

This corresponds to the “light-like” case of Aharony,
Gomis and Mehen [9]. The remaining symmetry in this
case is given by 2 × 2 matrices of the form

M = ±
(

1 b

0 1

)
b ∈ C. (7)

If one then translates this back we find that θµν is
always equivalent to one of the following forms:


0 θe 0 0

−θe 0 0 0
0 0 0 θm

0 0 −θm 0


 (8a)




0 0 0 −1
0 0 0 −1
0 0 0 0
1 1 0 0


 . (8b)

In the first case the remaining symmetry is SO(1, 1) ×
SO(2) in general, extended to O(1, 1) × SO(2) if θe =
0, θm �= 0, to SO(1, 1) × O(2) if θe �= 0, θm = 0 and of
course to the full SO(1, 3) if θe = θm = 0. In the lat-
ter case, the “light-like case” the remaining symmetry is
harder to describe. It consists of two “null rotations” [10]
both of which leave x0 − x1 invariant. The symmetry is
given by xµ → Lµ

νxν with

Lµ
ν =




1 + 1
2 (a2 + b2) − 1

2 (a2 + b2) a b
1
2 (a2 + b2) 1 − 1

2 (a2 + b2) a b

a −a 1 0
b −b 0 1


 . (9)

Since for any θ we can choose coordinates such that
in the new coordinates θ takes one of the forms of equa-
tion (8), it follows that any theory defined by a non-zero
θ is invariant under either (S)O(1, 1) × (S)O(2) or the
afore-mentioned symmetry of the light-like case. Of course
in the original coordinates then these symmetries will, in
general, be difficult to see.

Furthermore we see that in the space of non-
commutative theories almost all cases can be given in
terms of a θ of the form (8a) with θe �= 0, θm �= 0. This is
thus the generic case and the case which we will concen-
trate on in the rest of this paper.

3 Locality properties and time ordering

3.1 Commutation relations

It is obvious from the definition of the Moyal product that
the locality properties of the theory will drastically differ
from those of an ordinary quantum field theory. To begin
with let us consider commutators of composite operators
in an ordinary free theory. We have real scalar fields Φ(x)
which we split into positive and negative frequency parts
as Φ(x) = Φ+(x)+Φ−(x) in the usual way. We canonically
quantize the theory and define the commutator functions

i∆+(x − y) =
[
Φ+(x), Φ−(y)

]
, (10)

i∆−(x − y) =
[
Φ−(x), Φ+(y)

]
= −i∆+(y − x), (11)

i∆(x − y) = [Φ(x), Φ(y)]
= i∆+(x − y) + i∆−(x − y). (12)

Using standard identities of commutators one finds[
Φ(x), Φ2(y)

]
= 2[Φ(x), Φ(y)]Φ(y)
= 2i∆(x − y)Φ(y), (13)



P. Heslop, K. Sibold: Quantized equations of motion in non-commutative theories 547

[
Φ2(x), Φ2(y)

]
= 2i∆(x − y) (Φ(x)Φ(y)
+ Φ(y)Φ(x)) , (14)

both of which are proportional to ∆(x − y) and thus have
support within the light-cone. Indeed the commutator of
any two (Wick ordered) monomials of the fundamental
fields and a finite number of derivatives can be written as
a sum of terms proportional to ∆(x − y) and derivatives
thereof, and so these will also have light-cone support.
So operators formed by monomials and a finite number
of derivatives commute at space-like distances. (It is well
known that the converse is also true [11,12].)

Problems occur however if one considers monomials
containing an infinite number of derivatives such as Φ ∗
Φ(x). For example

[Φ(x), Φ ∗ Φ(y)] (15)
= i∆(x − y) ∗y Φ(y) + iΦ(y) ∗y ∆(x − y),

and the presence of the star can spoil the support proper-
ties of the commutator. This commutator consists of four
terms similar to

i∆+(x − y) ∗y Φ+(y) + iΦ+(y) ∗y ∆+(x − y)

=
1

(2π)9/2

∫
d3kd3k′

4k0k′0
e−ik+yA(k)e−ik′+(x−y)

×
(
e−ik′+∧k+

+ e−ik+∧k′+)
=

1
(2π)3/2

∫
d3k

2k0 e−ik+yA(k) (16)

×
(
∆+(x − y + k̃/2) + ∆+(x − y − k̃/2)

)
,

where

∗y = e
i
2 θµν←−∂ µ

−→
∂ ν , k ∧ k′ =

1
2
kµθµνk′ν ,

k̃µ = θµνk+
ν , k+ = (ωk,k). (17)

The commutator is no longer proportional to ∆(x − y)
but is shifted by an amount depending on k which is in-
tegrated over. Thus in general the commutator no longer
has support only within the light-cone, and the operators
do not commute at space-like distances. In general equal
time commutators will not vanish.

Note however that in the special case θe = 0 then
k̃0 = k̃1 = 0 and so the shift only occurs in the x2, x3

direction. In this case equal time commutators still vanish
and the support properties become “wedge-like” (see for
example [13]). Note that it is also possible to define the
free theory so that this also has only wedge-like support
properties and only has the symmetry SO(1, 1) × SO(2)
but not the full four-dimensional Lorentz group [14].

3.2 Interaction – tree approximation:
symmetry breaking

We define time ordered Green functions via the Gell-
Mann–Low formula:

〈TΦ(x1) . . . Φ(xn)〉 =
〈
TΦ(x1) . . . Φ(xn)eiSint

〉
0 , (18)

where Sint is the interaction part of the action. On the left-
hand side of this equation we have interacting fields and
the expectation value is with respect to the interacting
vacuum whereas on the right-hand side we take free fields
and the free vacuum which we indicate by the subscript 0.

Usually the time ordered product of two operators
O1, O2 is defined as

TO1(x)O2(y) (19)
= θ(x0 − y0)O1(x)O2(y) + θ(x0 − y0)O2(y)O1(x).

Now θ(x0 −y0) is not Lorentz invariant. However the time
ordered product defined by (19) is Lorentz invariant pro-
vided O1(x) and O2(y) commute at space-like distances.
This is because if x − y is time-like then θ(x0 − y0) is
Lorentz invariant whereas if x − y is space-like then the
order is irrelevant and

TO(x)O(y) = (θ(x0 − y0) + θ(x0 − y0))O1(x)O2(y)
= O1(x)O2(y), (20)

which is also Lorentz invariant.
This is no longer true in a general non-commutative

field theory since, as we saw in the previous section, equal
time commutators no longer vanish (unless we consider
the special case with θe = 0). So if we use the above defi-
nition of time ordering we do not expect the time ordered
products to obey even the remaining SO(1, 1)×SO(2) in-
variance. We therefore introduce a new definition of time
ordering.

3.3 Light-wedge variables and new time ordering

In the present case of SO(1, 1) × SO(2) invariance a suit-
ably adapted time ordering will be defined in the next
subsection; hence we introduce the respective variables as

u = (x0 − x1)/
√

2, v = (x0 + x1)/
√

2. (21)

It is useful to re-express the free fields in terms of these
variables which we call “light-wedge variables”. Note that
such co-ordinates are used in light-cone quantization of
field theories. We define momenta (with indices down-
stairs) as

ku =
k0 − k1√

2
, kv =

k0 + k1√
2

, (22)

and this means ku = kv, kv = ku. So the solution of the
Klein–Gordon equation (this is completely equivalent to
the usual solution via a change of variables) becomes

Φ(x) =
1

(2π)
3
2

∫
d4k δ(2kukv − kaka − m2)A(k)e−ikx

(23)

=
1

(2π)
3
2

∫
d3k

2kv
A(k)e−ikx, (24)

where in the second line d3k := dkvdk2dk3 and k =
(kv, ka) and the on-shell momentum k is defined as

ku = (m2 +kaka)/(2kv), kv = kv, ka = ka, a = 2, 3.
(25)
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Note that with these variables there is no need to separate
positive and negative frequency parts. Taking kv positive
corresponds to positive frequency and vice versa. The re-
ality of Φ implies

A†(k) = −A(−k). (26)

Inverting (24) we can express A(k) in terms of the field
Φ(x):

A(k) =
1

2π3/2

∫
d3x2kveikxΦ(x). (27)

We quantize the fields with the commutation relation

[A(k), A(k′)] = 2kvδ3(k + k′), (28)

and the vacuum satisfies

A(k)|0〉 = 0, kv < 0, 〈0|A(k) = 0, kv > 0. (29)

The commutator function has the form

i∆(x − x′) = [Φ(x), Φ(x′)]

=
1

(2π)3

∫
d3k

2kv
e−ik(x−x′), (30)

and ∆+ (∆−) are given by similar expressions but with the
kv integration restricted to the interval (0,∞) ((−∞, 0)).
One can explicitly check using Bessel function identities
such as (in the two-dimensional case)

(πi/2)H(1)
0 (−2m

√
uv) =

∫ ∞
0

dkv

2kv
e−im/ku(u)+kv(v) (31)

that these give the same expressions as in the usual case.
Finally, we will wish to redefine the causal Green func-

tion according to the new time ordering as

∆c(x) = θ(u)∆+(x) − θ(−u)∆−(x). (32)

In fact this is identical to the standard propagator defined
in terms of the usual time ordering as we argue below.

3.4 SO(1, 1) × SO(2) invariant time ordering

In order to keep the remaining SO(1, 1)×SO(2) symmetry
we use the following definition of time ordering:

TO1(x1)O2(x2) = θ(u1 − u2)O1(x1)O2(x2)
+ θ(u2 − u1)O2(x2)O1(x1), (33)

where we have used the “light-wedge” coordinates u, v de-
fined in (21).

Note that for two space-like commuting operators this
time ordering is in fact equivalent to the usual one since
for time-like x, we have that u > 0 ⇔ x0 > 0. So we
are using a choice of time ordering which is equivalent
to the usual prescription for ordinary theories, but which
also maintains the SO(1, 1)×SO(2) symmetry in the non-
commutative case. This is one way of seeing that the free
propagator defined with the u time ordering is equivalent

to the usual time ordering, since the propagator used in
ordinary perturbation theory is just the vacuum expecta-
tion value of the time ordered product of two fundamental
fields which are free and do indeed commute at space-like
distances.

To see that this new time ordering respects the sym-
metry note that under a SO+(1, 1) transformation u →
au, v → v/a; a > 0 and so θ(u) is invariant without the
need for space-like commutativity.

4 The quantum equation of motion

4.1 Usual time ordering

We wish to consider the tree-level quantum equations of
motion for a non-commutative field theory. Eventually we
will consider an interaction term φ3

∗ but to illustrate the
techniques we first consider some simple cases. In this sub-
section we define time ordering in the standard way with
respect to x0 whereas in the next subsection we will use
the new time ordering with respect to u. Firstly consider
the standard case of a theory defined by a free Lagrangian
together with an interaction Lagrangian which contains no
time derivatives. We wish to find the quantum equation
of motion for such a theory, i.e. the equation of motion for
a field inserted into a Green’s function defined using the
Gell-Mann–Low formula

(�x + m2) 〈Tφ(x)X〉
= (�x + m2)

〈
Tφ(x)XeiSint

〉
0 (34)

= (�x + m2)
∫

d4y 〈Tφ(x)φ(y)〉0

×
〈

T
δ

δφ(y)
(XeiSint)

〉
0

(35)

=
〈

T
δSint

δφ(x)
XeiSint

〉
0

+ c.t. (36)

=
〈

T
δSint

δφ(x)
X

〉
+ c.t. (37)

Here X represents any monomial of fields and derivatives
thereof. The third line is obtained using Wick’s theorem
and we will discuss this further below: it is only valid as
written when there are no time derivatives in Sint. In the
fourth line we have used that

(�x + m2) 〈T (φ(x)φ(y))〉0 = −iδ(x − y), (38)

and “c.t.” stands for “contact terms” which arise from
δ

δφ(y)X. Finally we re-express the answer in terms of in-
teracting fields to obtain the fifth line. We find a quantum
equation similar to the classical equation up to contact
terms.

As mentioned (35) can be derived from Wick’s theo-
rem but only when Sint contains no time derivatives: these
interfere with the time ordering. To see this consider for
illustration Sint of the form

Sint = g

∫
d4xO (∂0)nφ(x), (39)
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where O is a monomial in φ. Then using

(�x + m2) 〈T (φ(x)(∂0)nφ(y))〉0
=

{
−i(∂x

2 − m2)
n
2 δ(x − y), n even,

i∂0(∂x
2 − m2)

n−1
2 δ(x − y), n odd,

(40)

we find that the quantum equation of motion for n even
is

(�x + m2) 〈T (φ(x)X)〉 (41)

= (�x + m2) i
∫

d4y 〈Tφ(x)(∂0)nφ(y)〉0
〈
TOXeiSint

〉
0

+ (�x + m2) i
∫

d4y 〈Tφ(x)φ(y)〉0 (42)

×
〈

T
∂O
∂φ

(y)(∂0)nφ(y)XeiSint

〉
0

= g(∂x
2−m2)

n
2
〈
T
(OXeiSint

)〉
0

+g

〈
T

(
∂O
∂φ

(∂0)nφ(x)XeiSint

)〉
0

+ c.t. (43)

= g
〈
T
(
(∂x

2−m2)
n
2 O(x)XeiSint

)〉
0 (44)

+g

〈
T

(
∂O
∂φ

(x)(∂x
2−m2)

n
2 φ(x)XeiSint

)〉
0

+ c.t.

=

〈
T

(
δS̃int

δφ(x)
X

)〉
+ c.t., (45)

where we define a modified effective interaction as

S̃int = g

∫
d4xO(∂x

2−m2)
n
2 φ(x), n even. (46)

Notice that if φ is a free field S(φ) = S̃(φ) but for a general
field the two actions are different. Thus the manipulations
from (41) to (44) work because there we are dealing with
free fields, as indicated by the subscript 0 for the correla-
tors (see (18)). But the result for interacting fields of (45)
is non-trivial.

Some comments on the manipulations above. Equa-
tion (41) is obtained via the Gell-Mann–Low formula using
Wick’s theorem (and is the analogue of (35)). To obtain
(43) we have used the first equation of (40) and integrated
out the delta function. On going from (43) to (44), in the
first term we have moved the differential operator inside
the correlation function (which is allowed since there are
no time derivatives) and in the second term we have used
the equations of motion for the free field sitting in the
propagator.

A crucial point is that we take all derivatives occur-
ring in the interaction Lagrangian to act before the time
ordering whereas the integration itself is taken after the
time ordering. It is also possible to define a time ordering
T∗ where all derivatives occur outside the time ordering
and this definition gives the näıve Feynman rules. For a
standard quantum field theory these two definitions differ
by local terms only and are therefore equivalent after a fi-
nite renormalisation whereas for a non-commutative field
theory the equivalence is not to be expected.

The case with n odd is more complicated. In this case
the quantum equation of motion is

(�x + m2) 〈Tφ(x)X〉 (47)

= −g ∂0(∂x
2−m2)

n−1
2
〈
TOXeiSint

〉
0

+g

〈
T

∂O
∂φ

(∂0)nφ(x)XeiSint

〉
0

+ c.t. (48)

= −g ∂0

〈
T (∂x

2−m2)
n−1

2 OXeiSint

〉
0

(49)

+g

〈
T

∂O
∂φ

∂0(∂x
2−m2)

n−1
2 φ(x)XeiSint

〉
0

+ c.t.

Here there is a crucial difference to the case where we
have an even number of time derivatives in the interaction
Lagrangian. We wish to rewrite this as

〈
T
(

δS̃int
δφ(x)X

)〉
+

c.t. with the modified action

S̃int =
∫

d4xO ∂0(∂x
2−m2)

n−1
2 φ(x), n odd. (50)

In (49), however, one term has the time derivative act-
ing after the time ordering and one has it acting before
the time ordering. If we wish to write this in terms of a
modified action (with all derivatives acting after the time
ordering) then we pick up an additional second order term
involving a commutator at second order in the coupling.
This extra term comes from pulling the time derivative
outside the time ordering and has the form

−ig2
∫

d4y δ(x0 − y0) (51)

×
〈

T

[
∂O
∂φ

(∂x
2−m2)

n−1
2 φ(x), O(y)(∂0)nφ(y)

]
XeiSint

〉
0

= +g2
〈

T

{
(∂x

2−m2)n−1
(

O∂O
∂φ

)

+(∂x
2−m2)

n−1
2

(
O∂2O

∂φ2 (∂x
2−m2)

n−1
2 φ

)}
XeiSint

〉
0

arising from the time derivative acting on the time order-
ing.

In a standard quantum field theory, with only a fi-
nite number of time derivatives, one can remove this extra
term using the method of finite counter terms, and this is
equivalent to using the T∗.

Note that the above result shows that, using the Gell-
Mann–Low formula, two Lagrangians which differ by total
derivatives (and hence give the same action) can neverthe-
less lead to different quantum equations of motion. For
example, consider the case n = 1, O = φm; then the in-
teraction Lagrangian is a total derivative L = φm∂0φ =
∂0φ

m+1/(m + 1) and so the action is the same as the free
one. However the quantum equation of motion obtained
using the Gell-Mann–Low formula is not the same as the
free one. In this case (49) reads

(�x + m2) 〈Tφ(x)X〉 (52)

= −g ∂0
〈
Tφ(x)mXeiSint

〉
0 + g
〈
T∂0φ(x)mXeiSint

〉
0 + c.t.
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and the two terms on the right-hand side do not cancel
because one time derivative is inside the time ordering
and one outside. We obtain the non-vanishing term (51).
However once again in a local theory with a finite number
of time derivatives, these discrepancies can be removed
using finite counter terms. In a theory defined with the
star product however this discrepancy may be unavoid-
able. Note that the fact that with the standard time or-
dering Lagrangians which differ by total derivatives can
lead to different quantum theories has also been noted in
[3]. It turns out that this is not the case for the new time
ordering which we use in the next section and can thus be
seen as a further advantge of this over the standard time
ordering.

This method can be extended to more general actions.
The prescription is simple: for the quantum equation of
motion, we obtain a modified action S̃int simply by re-
placing every occurrence of ∂2

t with ∂x
2−m2 and leaving

behind a single ∂t if necessary.
So in particular for the φ3

∗ theory we almost obtain the
quantum action simply by replacing the Moyal star with
the following (in momentum space):

e−ip∧q → cos(p+ ∧ q+) − i sin(p+ ∧ q+)
p ∧ q

p+∧ q+ , (53)

where p+ = (
√

p2 + m2,p). This is simply what one ob-
tains in momentum space by replacing every occurrence
of ∂2

0 with ∂x
2−m2, and leaving behind a single ∂0 if you

started with an odd number. But as in the example above,
one has to be careful about whether the time derivatives
act before or after the time ordering. Those time deriva-
tives which act before the time ordering must be pulled
out of the time ordering, leading to an additional term at
order g2 (as we saw in (51)). Furthermore in the case of
non-commutative field theory this additional term is not
SO(1, 1) × SO(2) invariant since it involves an integral
of δ(x0 − y0)[φ(x), φ3

∗(y)]. The commutator in this case
does not give a space-like delta function needed in order
to complete the expression into a Lorentz invariant delta
function as occurs for interaction terms involving only fi-
nite numbers of time derivatives1.

4.2 New time ordering

We now repeat the above calculation using the time or-
dering adapted to the SO(1, 1) symmetries. We expect
this case to preserve the remaining symmetries for the
reasons given previously. Green’s functions are defined by
the Gell-Mann–Low formula (18) together with the time
ordering defined with the u coordinate as in (33). We wish
to calculate the quantum equation of motion as we did in
the previous section for the usual time ordering. In the
case of an interaction Lagrangian containing no explicit
u-derivatives there will be no interference with the time

1 The breaking of the remaining symmetries in TOPT for
non-commutative field theory was first pointed out by Reichen-
bach.

ordering and the quantum equation of motion will repro-
duce that of the classical one; that is, (37) will be satisfied.
When the interaction Lagrangian contains u-derivatives
however this will interfere with the time ordering just as
time derivatives did in the previous section.

Consider the interaction Lagrangian

Sint = g

∫
d4xO (∂u)nφ(x); (54)

then using

(�x + m2) 〈T (φ(x)(∂′u)nφ(x′))〉0
= −iδ(u − u′)

∫
d3k(ik̄u)ne−ik(x−x′) (55)

= −i
(

m2 − ∂2
2 − ∂2

3

2∂v

)n

δ(x − x′), (56)

where d3k = dkvdk2dk3, we find the quantum equation of
motion:

(�x + m2) 〈T (φ(x)X)〉 (57)

= g(−1)n

(
∂2
2 + ∂2

3 − m2

2∂v

)n 〈
TOXeiSint

〉
0

+g

〈
T

∂O
∂φ

(∂u)nφ(x)XeiSint

〉
0

+ c.t. (58)

= g

〈
T (−1)n

(
∂2
2 + ∂2

3 − m2

2∂v

)n

OXeiSint

〉
0

(59)

+g

〈
T

∂O
∂φ

(
∂2
2 + ∂2

3 − m2

2∂v

)n

φ(y)XeiSint

〉
0

+ c.t.

=

〈
T

δS̃int

δφ(x)
X

〉
+ c.t., (60)

where we define a modified effective action as

S̃int = g

∫
d4xO

(
∂2
2 + ∂2

3 − m2

2∂v

)n

φ(x). (61)

Note that there is here no distinction between n odd and
n even, and remarkably there is no complication with left
over time- (i.e. u-) derivatives acting both inside and out-
side the time ordering which were the origin of the break-
ing of Lorentz invariance in the previous case (recall that
with the usual time ordering, for n odd we were left with a
remaining ∂0 which gave extra terms and led to SO(1, 1)
violating terms in the non-commutative case.) Here all u-
derivatives have disappeared and so the derivative opera-
tors can be happily commuted through the time ordering.

Notice that to go from (58) to (59) in the first term
we have used the fact that we can put the differential
operator inside the correlator since it commutes with the
time ordering and in the second term we have used the
fact that we are dealing with free fields in replacing ∂n

u .
In the case of the new time ordering the modified effective
action is obtained by simply replacing every occurrence of
∂u by (∂2

2 + ∂2
3 − m2)/2∂v in the action. This is because

the Gell-Mann–Low formula gives time ordered vacuum
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expectation values of interacting fields in terms of those
for free fields for which this replacement is possible by the
free field equations of motion.

Indeed a quicker way to deal with the complications
in arriving at a quantum equation of motion due to the
time ordering is to argue as follows. Firstly use the Gell-
Mann–Low formula to obtain an equation similar to (34).
Now remove all u-derivatives using the free field equation
of motion (since on the RHS of (34) we have free fields.)
This essentially involves replacing S with S̃. Now simply
follow the arguments leading to (37) which are now valid
since the interaction Lagrangian has no time derivatives.
Clearly we end up with a quantum equation of motion
involving the modified Lagrangian S̃.

It may appear at first sight from this argument that
the modified action is the same as the original action and
we are free to use either. It should be noted however that
the resulting modified effective action is for vacuum expec-
tation values of interacting fields (i.e. (57) and (60) are for
interacting fields) and so S̃ �= S. Indeed we will later be
able to define Feynman rules using the modified interac-
tion and this is only possible once all time derivatives have
been removed.

Note that in the above formulae we define the inverse
differential 1/∂x via its Fourier transform as

1
∂x

f(x) =
∫

dk e−ikx f̃(k)
−ik

(62)

and integration by parts follows straightforwardly:∫
dx

1
∂x

f(x)g(x) = − ∫ dxf(x) 1
∂x

g(x). (63)

In non-commutative φ3
∗ field theory therefore we simply

change the Moyal star in momentum space as follows:

∗ = e−
i
2 p∧q → ∗ = e−

i
2 p∧q (64)

where p is the on-shell momentum defined in (25) to obtain
a modified action S̃, whose näıve variation leads to the
quantum equations of motion.

4.3 The meaning of S̃

We have shown that〈
T

δS̃

δφ
X

〉
= c.t. (65)

where S̃ =
∫

d4x
(
∂µφ∂µφ − m2

2 φ2
)

+ S̃int and we inter-
pret all u-derivatives to be acting outside the time or-
dering. This can be rewritten in terms of the generating
functional for the Green’s functions Z as

−(� + m2)
δ

δJ(x)
Z +

δS̃int

δφ

∣∣∣∣∣
φ= δ

iδJ

Z = iJZ, (66)

where the right-hand side gives the contribution of the
contact terms.

The generator of connected Green’s functions Zc is de-
fined by Z = eiZc and we define the one-point function
φc(x) = i δZc

δJ(x) . Equation (66) then becomes (at tree level)

(� + m2)φc +
δS̃int

δφ

∣∣∣∣∣
φ=φc

= J. (67)

The above equation ignores all terms of the form δn

δJn Zc for
n > 1. Such terms involve at least n − 1 closed loops and
therefore vanish in the tree approximation. The generator
of one-particle irreducible diagrams Γ is then defined in
the usual way as a functional of φc: Γ = Zc − ∫ dxJφc so
that Γ satisfies

δΓ

δφc
= −J. (68)

In particular, at tree level we have

δΓ

δφc
= −J = −(� + m2)φc +

δS̃int

δφ

∣∣∣∣∣
φ=φc

=
δS̃

δφ

∣∣∣∣∣∣
φ=φc

;

(69)
that is,

Γ (φ) = S̃(φ), (70)

or in other words, S̃ is the tree-level effective action.
This is a somewhat remarkable result: usually the zero-

loop approximation to Γ can be identified with the clas-
sical action. And the vertices of the classical action are
used as the vertices in the interaction as defined, say via
the Gell-Mann–Low formula. Here however the zero-loop
approximation to the vertex functional Γ cannot be iden-
tified with the classical action but differs by the transition
to the mass-shell within the star product vertices as en-
forced by the quantization procedure. It is also to be noted
that this on-shell star product is not really a star product:
it is e.g. not associative.

5 Symmetries

We wish to prove explicitly that the theory defined via
the Gell-Mann–Low formula and with the modified time
ordering is invariant under translations and the remaining
SO(1, 1) × SO(2) symmetry (at least at tree level).

For this we simply have to show that the effective ac-
tion Γ is invariant under these symmetries. If it is, then
we will also be able to construct conserved energy- and
angular-momentum tensors by Noether’s theorem.

5.1 Translations: the energy momentum tensor

Since the effective action Γ has no explicit x dependence,
it must be translation invariant. We do not consider here
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the free part of the effective action which takes the stan-
dard form and gives the standard energy momentum ten-
sor. The interaction part has the form

Γint =
∫

dxφ1∗φ2∗φ3 (71)

=
∫

dµ(pi) φ̃(p1)φ̃(p2)φ̃(p3)F (p1, p2, p3),

with dµ(pi) := dp1dp2dp3δ(p1 + p2 + p3) and where φ̃ is
the Fourier transform of φ, and F is the non-commutative
phase factor

F (p1, p2, p3) = e−i(p1∧p2+p1∧p3+p2∧p3). (72)

Recall that ∗ is defined (in momentum space) in (64) and
p is the on-shell momentum defined in (25). Explicitly, the
Ward identity for infinitesimal translations has the form

δΓ =
∫

dx(aµ∂µφ)∗φ∗φ (73)

+φ∗(aµ∂µφ)∗φ + φ∗φ∗(aµ∂µφ)

=
∫

dµ(q, pi) φ̃(p1)φ̃(p2)φ̃(p3)ãµ(q)(−i)

×Iµ(q, p1, p2, p3), (74)

with dµ(q, pi) := dqdp1dp2dp3δ(q+p1+p2+p3) and where

Iµ(q, p1, p2, p3)
= p1µF (q + p1, p2, p3) (75)

+p2µF (p1, q + p2, p3) + p3µF (p1, p2, p3 + q)
= (p1 + p2 + p3)µ F (p1, p2, p3)

+p1µ(F (q + p1, p2, p3) − F (p1, p2, p3))
+p2µ(F (p1, q + p2, p3) − F (p1, p2, p3))
+p3µ(F (p1, p2, q + p3) − F (p1, p2, p3)). (76)

Now

F (p1 + q, p2, p3) − F (p1, p2, p3)
∼ F (p1, p2, p3) × Φ1 × (−i q1 ∧ (p2 + p3)), (77)
F (p1, p2 + q, p3) − F (p1, p2, p3)
∼ F (p1, p2, p3) × Φ2 × (−i q2 ∧ (p3 − p1)), (78)
F (p1, p2, p3 + q) − F (p1, p2, p3)
∼ F (p1, p2, p3) × Φ3 × (i q3 ∧ (p1 + p2)), (79)

where

Φ1 :=

(
ei(p2+p3+p1)∧(p2+p3) − 1

i(p2 + p3 + p1) ∧ (p2 + p3)

)
, (80)

Φ2 :=

(
ei(p1+p3+p2)∧(p3−p1) − 1

i(p1 + p3 + p2) ∧ (p3 − p1)

)
, (81)

Φ3 :=

(
e−i(p1+p2+p3)∧(p1+p2) − 1

−i(p1 + p2 + p3) ∧ (p1 + p2)

)
. (82)

We have here defined

qi := q + pi − pi, (83)

so three of the components of qi are equal to those of q
i.e. (qi)v = qv, (qi)2 = q2, (qi)3 = q3 whereas the uth
component is for example

(q1)u =
(

m2 + (q + p1)a(q + p1)a

2(qv + p1v)
− m2 + papa

2p1v

)

∼ qv(m2 + p1ap1a) − qa(p1 − p2 − p3)ap1v

2(p2v + p3v)p1v
. (84)

The “∼” in all the above equations means “equal when
multiplied by δ(q + p1 + p2 + p3)”: we have used the delta
function to ensure that we have an expression which is
linear in q (corresponding to a single derivative of aµ.)
Now define Siµ via

q1 ∧ (p2 + p3) = qµS1µ, (85)
q2 ∧ (p3 − p1) = qµS2µ, (86)

−q3 ∧ (p1 + p2) = qµS3µ. (87)

In this way we have obtained an expression for Iµ which
is linear in q

Iµ ∼ F (p1, p2, p3)

(
−qµ − i qν

∑
i

Sν
i piµΦi

)
. (88)

Putting this into (74) gives

δΓ = −
∫

dx∂νaµ(x)T ν
µ , (89)

where

(Tint)ν
µ = δν

µΓint

+ i
∫

dp1dp2dp3e−ix(p1+p2+p3)φ̃(p1)φ̃(p2)φ̃(p3)

×F (p1, p2, p3)
∑

i

Sν
i piµΦi (90)

for a, b ∈ {2, 3}.

5.2 Lorentz transformations:
angular-momentum tensor

The effective action is also invariant under the remaining
SO(1, 1) × SO(2) transformation. The underlying reason
why the effective action is invariant under these symme-
tries is that the symmetries commute with the projection
of p onto the mass-shell p → p. In other words we have
p + δp = p+δp where δ is an infinitesimal SO(1, 1)×SO(2)
transformation. We show this explicitly in (95)

Note that there is another crucial difference with the
standard time ordering here. With the standard time or-
dering one projects onto the mass-shell by replacing p0

with ±
√

p2
1 + papa + m2 instead of replacing pu as we do

with the new time ordering. This projection does not com-
mute with the SO(1, 1)×SO(2) transformation, thus lead-
ing to a loss of the symmetry.
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The explicit proof of covariance of the effective action
and construction of the angular-momentum tensor follows
in a way similar to that of the energy-momentum tensor.
An infinitesimal Lorentz transformation has the form (73)
with aµ = wµ

ν xν and so δΓ can be written

δΓ =
∫

dµ(pi, q) w̃µν(q) (91)

×
(
p1ν∂µφ̃(p1)φ̃(p2)φ̃(p3)F (q + p1, p2, p3) + . . .

)
,

where the dots indicate two more similar terms. We
proceed as for the energy-momentum tensor we write
F (q + p1, p2, p3) as F (p1, p2, p3) + (F (q + p1, p2, p3) −
F (p1, p2, p3)) and similarly for the other two terms. Us-
ing (77) and (79) and integration by parts in momentum
space we arrive at

δΓ = −
∫

dx ∂νwµνxµ(φ∗φ∗φ)

− wµν

∫
dµ(pi)

∑
i

piµ
∂

∂piν
F (p1, p2, p3) (92)

+
∫

dx∂ρw
µν

∫
e−ix(p1+p2+p3)φ̃(p1)φ̃(p2)φ̃(p3)

×F (p1, p2, p3)

×
∑

i

Sρ
i Φipiµ

∂

∂piν
(φ̃(p1)φ̃(p2)φ̃(p3)).

Now the first and third terms vanish for a global Lorentz
transformation (for which wµν is constant). The second
term represents an infinitesimal Lorentz transformation
in momentum space of F (p1, p2, p3). Note that

δF (p1, p2, p3)

:=
∑

i

wµ
νpiµ

∂

∂piν
F (p1, p2, p3) (93)

= F (p1, p2, p3) (94)

×
∑

i

wµ
νpiµ

∂

∂piν
(p1 ∧ p2 + p2 ∧ p3 + p1 ∧ p3).

Now for an infinitesimal SO(1, 1)×SO(2) transformation
wu

u = −wv
v and w2

3 = −w3
2 are the only non-zero com-

ponents of wµ
ν and one can easily show that

wµ
νpµ∂νpρ = pµwµ

ρ, w ∈ so(1, 1) × so(2), (95)

which is the statement that p is covariant under SO(1, 1)×
SO(2). Note that this is not true for an arbitrary infinites-
imal Lorentz transformation. In particular there are extra
non-covariant terms in the above equation involving wu

a.
It is now easy to see that δF = 0 under an SO(1, 1) ×

SO(2) transformation since we know that θµν is invariant
(i.e. wµ

µ′θµ′ν + θµν′
wν

ν′ = 0).
Having thus proven invariance of the tree-level quan-

tum theory under SO(1, 1)×SO(2) we can then construct
the angular-momentum tensor simply by reading off the
coefficient of ∂ρw

µν in (92). We obtain

Mρµν = ηρ[νxµ]Γint

+
∫

dp1dp2dp3e−ix(p1+p2+p3) (96)

×F (p1, p2, p3)

×
∑

i

Sρ
i Φip

[µ
i ∂ν]
(
φ̃(p1)φ̃(p2)φ̃(p3)

)
.

6 LSZ reduction

In ordinary quantum field theory one obtains matrix ele-
ments of operators from time ordered Green functions by
the LSZ reduction formulae. Since they are based on the
usual time ordering with respect to x0 we have to check
that also in our case we have analogous relations.

The quantity most immediately associated to Green
functions of interacting fields is the S-matrix. One can
straightforwardly mimic the manipulations used to derive
the standard LSZ reduction formulae if we postulate the
existence of an asymptotic (weak) limit
√

zΦin(x) = lim
u→−∞Φ(x),

√
zΦout(x) = lim

u→+∞Φ(x).

(97)
Here the factor z corresponds to the wave function renor-
malisation and will be suppressed in the formulae to fol-
low. The result is that an arbitrary matrix element with n
out- and l incoming particles is related to Green functions
of interacting fields as follows:

out〈p1 · · · pn|q1 · · · ql〉in = in〈p1 · · · pn|S|q1 · · · pl〉in (98)

= in+l

∫
d4y1 · · ·d4xleipkyk+qjxj (99)

×(�y1 + m2) · · · (�xl
+ m2)

×〈0|TΦ(y1) · · ·Φ(xl)|0〉
= (−i)n+1(p2

1 − m2) · · · (q2
l − m2)G̃(p1, · · · , ql)|,

(100)

where G̃ is the Fourier transform of the time ordered
Green’s function and the vertical line indicates that all
momenta are put on-shell by setting pu = (papa +
m2)/(2pv), S is the S-matrix and the time ordering is
with respect to the u component.

7 Comparison of Feynman rules
for different formulations
of non-commutative field theories

7.1 The näıve Feynman rules

The näıve Feynman rules correspond to taking the Gell-
Mann–Low formula but assuming that all derivatives in
the interaction Lagrangian occur outside the time order-
ing. We sketch the näıve momentum space Feynman rules
(up to factors) for φ3

∗ theory looking at a diagram with
N internal lines, with momenta ki, E external lines with
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Fig. 1. 1-loop diagram. The momenta rj , sj , tj can be read off
from the diagram: (r1, s1, t1) = (p1, −k1, −k2) (r2, s2, t2) =
(k1, k2, −p2)

momentum pi and V vertices. The jth vertex has lines en-
tering it with momenta rj , sj , tj which could be internal
or external lines. The Feynman rules for this diagram as
given for example by Filk [15] result in

G̃(pi)

∼ S−1
E∏

i=1

P (pi)
N∏

i=1

∫
d4kiP (ki) ×

V∏
j=1

δ4(rj + sj + tj)

×F (rj , sj , tj), (101)

where S is a symmetry factor, P (ki) = i
k2

i−m2+iε is the
Fourier transform of the propagator and F (p1, p2, p3) is
the non-commutative phase factor at the vertex given by
φ3
∗ theory. We have

F (p1, p2, p3) =
∑

σ∈P3

ei(pσ(1)∧pσ(2)+pσ(1)∧pσ(3)+pσ(2)∧pσ(3)),

(102)

where P3 is the set of permutations of (1, 2, 3). The mo-
menta rj , sj , tj are the momenta entering a vertex Vj and
can be read off from the Feynman diagram. We illustrate
this with a 1-loop two-point function in Fig. 1.

So the Green’s function corresponding to this diagram
is

G̃(p1, p2) = S−1P (p1)P (p2)
∫

d4k1d4k2P (k1)P (k2)

×δ4(p1 − k1 − k2)δ4(k1 + k2 − p2)
×F (p1,−k1,−k2)F (k1, k2,−p2). (103)

It is by now well known that these rules respect unitarity
only in the case that θe vanishes since otherwise there is a
conflict of commuting time derivatives of the star product
with time ordering.

7.2 TOPT time ordered with respect to x0

In [2] Feynman rules were also derived by following the
Gell-Mann–Low formula using the usual (i.e. with respect
to x0) time ordering but proper care had been taken to the
occurrence of time derivatives from the star product before
time ordering. These rules also follow from the Hamilto-
nian approach of [1]. We now associate a number λi = ±1
with each internal momentum ki and a number µi = ±1

with each external momentum pi. The resulting Feynman
rules are

G̃(pi) ∼ S−1
∑
λi,µi

E∏
i=1

Pµi
(pi)

N∏
i=1

∫
d4kiPλi

(ki)

×
V∏

j=1

δ4(rj + sj + tj)F (rλ
j , sλ

j , tλj ). (104)

Here the momenta appearing in the phase factor are put
on-shell by replacing the zeroth component of p, with λwp

as indicated by the superscript λ. The notation here is
somewhat schematic: the superscript λ is that associated
with the momentum rj , sj or tj . We must then sum over
λi = ±1 corresponding to positive and negative frequency
momenta. The factor

Pλ(k) =
λ

2wk(k0 − λ(wk − iε))
=

ηλ(k)
k2 − m2 + iε

,

(105)
ηλ(k) = 1/2(1 + λk0/wk), (106)

wk =
√

k2 + m2 (107)

is the Fourier transform of θ(λx0)Dλ(x). Note that for on-
shell momenta this is equal to the propagator whereas even
for off-shell momenta we have that P+(k)+P−(k) = P (k).
This implies that if the non-commutative phase factor is
independent of λ (as for example in the case of pure space-
space non-commutativity) then summing over λ we obtain
the näıve Feynman rules (101). Since, however, the phase
factor does explicitly depend on λ in the generic case (i.e.
with θe �= 0) we cannot re-express these rules in terms of
ordinary propagators.

For the 1-loop diagram above we obtain

G̃(p1, p2) = S−1
∑
λi,µi

Pµ1(p1)Pµ2(p2)

×
∫

d4k1d4k2Pλ1(k1)Pλ2(k2)

×δ(p1 − k1 − k2)δ(k1 + k2 − p2) (108)
×F (p1µ1 ,−k1λ1 ,−k2λ2)F (k1λ1 , k2λ2 ,−p2µ2).

These rules lead to unitary amplitudes also in the case
when θe does not vanish, but still they are not satisfactory:
the main drawback being that the underlying SO(1, 1) ×
SO(2) invariance is not maintained.

7.3 TOPT with the new time ordering

Finally we consider the Feynman rules obtained from the
Gell-Mann–Low formula with the new time ordering intro-
duced in Sect. 3.3. We could derive the Feynman rules from
first principles, but in order to compare this approach with
the previous one, we instead derive the new Feynman rules
by suitably adapting (104). We only need to find modifica-
tions for Pλ(k) and for the non-commutative phase factor.
Since Pλ(k) is the Fourier transform of θ(λx0)Dλ(x) we
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replace this with the Fourier transform of θ(λu)Dλ(x).
Using

θ(λu) =
iλ
2π

∫
dse−isu

s + iελ
, (109)

Dλ(x) =
∫

d3p

2pv
θ(λpv)e−ipx, (110)

we obtain

Pλ(k) → θ(λkv)
2kv(ku − k̄u + iελ)

=
θ(λkv)

k2 − m2 + iε
. (111)

The non-commutative phase factor is obtained by tak-
ing the näıve phase factor F , putting all the momenta on-
shell, and splitting into positive and negative frequency
parts. In the present case we put the momenta on-shell by
replacing p with p (see (25)) and the positive and negative
frequency parts correspond to positive and negative pv. So
we expect the non-commutative phase factor

F (kλ1
1 , kλ2

2 , kλ3
3 ) (112)

→ θ(λ1k1v)θ(λ2k2v)θ(λ3k3v)F (k1, k2, k3).

Note that in this case splitting into positive and negative
frequency parts simply corresponds to taking pv positive
or negative (which we have indicated by using step func-
tions). However the step functions are already present in
Pλ(x) so the phase factor is effectively independent of λ.
Indeed, if we perform the sum over λ the Pλs sum to give
complete propagators and we obtain the following Feyn-
man rules:

G̃(pi)

∼ S−1
E∏

i=1

P (pi)
N∏

i=1

∫
dkiP (ki) ×

V∏
j=1

δ(rj + sj + tj)

×F (rj , tj , sj). (113)

Note that the only difference to the näıve case is the ap-
pearance of the modified phase factor.

So the Green’s function corresponding to the 1-loop
diagram above is

G̃(p1, p2)

= S−1P (p1)P (p2)
∫

d4k1d4k2P (k1)P (k2)

×δ4(p1 − k1 − k2)δ4(k1 + k2 − p2)

×F (p1,−k1,−k2)F (k1, k2,−p2). (114)

Clearly this is a tremendous simplification when actually
calculating diagrams. In a sense the new time ordering ren-
dered superfluous the explicit distinction between positive
and negative frequency parts and thus reunited what had
to be separated in old fashioned time ordered perturbation
theory. It also seems to obey the positive energy condition
discussed in [16] since the free propagator certainly does
and in diagrams describing interaction also energy com-
ponents occur with the correct signs only. This is ensured

by the fact that we can formulate Feynman rules in terms
of propagators.

Of course, as for TOPT [3] and the equivalent Hamil-
tonian formulation [1] unitarity is now automatic due to
a correct treatment of the time ordering. In the appendix
we show this explicitly by checking the optical theorem.

8 Discussion, conclusions and outlook

The starting point for the considerations of the present
paper is the symmetry content of a theory of quan-
tum fields if one has interactions according to the Moyal
product and a generic θµν . It comprises translations and
SO(1, 1)×SO(2) which should be maintained in the course
of quantization. Basing time ordering on the values x0 of
the coordinates this is not the case. It is however true
when we time order according to the light-wedge variable
u = (x0 − x1)/

√
2. We proved the symmetry content of

the theory to be the desired one by explicitly construct-
ing the respective conserved currents in the form of Ward
identities for time ordered Green functions. Here we used
the gratifying fact that the quantum equations of motion
can be written in closed form via an effective action. It is
remarkable that this effective action is in the tree approx-
imation not the classical action but the classical action
with star product modified into products living on the
mass-shell of the fields.

A further noticeable simplification arises on the level
of Feynman rules. Again as a consequence of the new time
ordering we arrive at essentially näıve ones: propagators
are the usual ones, phase factors are those of the modified
star product, i.e. mass-shell factors written in the new
variables. Note that one might be worried about infrared
divergences arising from using light-cone coordinates (as
for example pv → 0). These Feynman rules show that
these are unlikely to occur since the only divergent pieces
occur in the phase where they are rendered harmless.

Unitarity has been checked to hold in an explicit exam-
ple which however permits immediate generalisation on a
formal level. Hence the theory is certainly well defined on
the tree level.

LSZ reduction works well when the limit of u going to
plus or minus infinity is taken as defining the asymptotics.
Causality is lost in the sense that there are in general no
two points x, y in space-time where we can be certain that
Φ(x) commutes with Φ(y) (i.e. no analogue of “space-like
separation”). This means that our time ordering defines
a genuine “before” and “after”. There is no ambiguous
(space-like) region as there is in an ordinary relativistic
quantum field theory.

Thinking of extensions of our results one can indeed
have the hope that gauge theories exist as well for generic
θ, since global symmetry currents will exist due to the sim-
ple form of the quantum equations of motion. Hence the
examples which are known to exist for vanishing θe should
all be generalisable to generic θ. In the actual formulation
of gauge fixing and BRS invariance the expertise collected
in light-cone quantization should be helpful. For higher or-
ders analogously one should at least be able to construct
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Fig. 2. Optical theorem for the 1-loop diagram. The imaginary
part of the amputated 1-loop diagram equals the cut graph on
the right which will be defined below

what can be constructed for restricted θ. Since with the
time ordering the integrals truly change one should also
have a fresh look at the ultraviolet/infrared connection. It
may very well differ from the previous one.
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Appendix: Unitarity

Having derived the Feynman rules we are now in a posi-
tion to test unitarity of the theory by checking the optical
theorem. As an example we study the two-point function
of φ3

∗ in the one-loop approximation. The optical theorem
can be given diagrammatically as Fig. 2.

The proof of unitarity follows closely that of [2] for the
usual time ordering. The left-hand side of this equation is
the imaginary part of the 1-loop function given in (114),
amputated by removing the terms P (p1)P (p2). In order to
find the imaginary part of this we first explicitly perform
the integration over the uth component of all internal mo-
menta (ki)u. For this it is crucial that unlike the näıve
Feynman rules, here the non-commutative phase factor F
is independent of (ki)u. The integration over (k1)u can be
finished by the delta function and the integration over k2
can be performed using contour integration. The result is

G̃(p1, p2)
P (p1)P (p2)

= S−1
∫

d3µ1d3µ2
δ3(p1 − k1 − k2)δ4(p1 − p2)

p1u − k1u − k2u + iε
×F (p1,−k1,−k2)F (k1, k2,−p2), (A.1)

where d3µi = dkvdk2dk3/2kv is the invariant measure.
We are now in a position to compute the imaginary

part of this. Using the distribution identity

Im
(

1
x + iε

)
= δ(x + iε), (A.2)

we find the left-hand side of the optical theorem:

Im
G̃(p1, p2)

P (p1)P (p2)

= S−1
∫

d3µ1d3µ2δ
4(p1 − k1 − k2)δ4(p1 − p2)

×F (p1,−k1,−k2)F (k1, k2,−p2)

= S−1
∫

d4k1d4k2δ
4(p1 − k1 − k2)δ4(k1 + k2 − p2)

×δ4(k2
1 − m2)δ4(k2

2 − m2)

×F (p1,−k1,−k2)F (k1, k2,−p2). (A.3)

Comparing with (114) we see that the imaginary part of
the amputated Green’s function is obtained simply by
replacing the propagators with delta functions, P (k) →
δ(k2 − m2).

The right-hand side of the optical theorem is defined
to be ∫

d4k1d4k2δ(k2
1 − m2)δ(k2

2 − m2) (A.4)

×M∗(−p2 → k1k2)M(p1 → k1k2)

and by substituting in

M(p1 → k1k2) = F (p1,−k1,−k2)δ4(p1 − k1 − k2),
(A.5)

M∗(p2 → k1k2) = F (p1,−k1,−k2)δ4(p1 − k1 − k2),
(A.6)

we find that the right-hand side equals the left-hand side
and the optical theorem is satisfied.

As usual, in this unitarity check one had to be sure only
of the fact that the imaginary part of the loop diagram
is finite. The real part diverges and would require proper
definition which we do not attempt here. On this formal
level one can also state generalisations: unitarity will be
alright to all orders with our time ordering since our non-
commutative phase factors do not change the unitarity
character of an underlying unitary theory.
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